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Abstract
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The schem works for quite a general class of item chrceitccurves (ICC's)
and is guaranteed to completely recover the e distribution. as the test length
J, grows. After an initial function inversion, the scheme cam be inexpensivey-
used to recome the E) distribution in each of several different administrations
of the same test (or subpopulations in one test administration). Moreover, this
approach could be used to recover the distribution of a dominant ability dimen-
sion when local independence fails. Finally, the scheme provides a starting place
for diagnostics concerning assumptions about the shapie of thLoG distribution or
ICC's of a particular test. Work is ciirrently underway to further examine and-
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1 The basic estimator

A principal application of educational testing is inferring the distribution of abilities in

various populations. This task is important .for both users of these tests (in, say, comparing

various subpopulations) and researchers and test developers (in, say, developing or using

item calibration-ICC parameter estimation-procedures within the IRT framework).

Inference about the ability distribution from item response data goes back at least to

Lord (1953) who gives an interesting qualitative account of the possible distortions induced

by the traditional IRT model. With the rise in popularity of item response theory, IRT,

many methods for estimating the latent distribution have been developed.

Samejima and Livingston (1979) fit polynomials to latent densities using the method of

moments. Samejima (1984) also fits e densities, given the MLE 8, using specific parametric

families by matching two or more moments. Levine (1984, 1985) projects the (unknown)

latent distribution onto a convenient function space in the span of the test's conditional

likelihood functions and estimates the projection by maximum likelihood. Mislevy (1984)

assumes that the ability distribution is well approximated by a collection of masses centered

at points placed a priori along the 0 axis and estimates the sizes of the masses at each

point. More generally, hierarchical and/or empirical Bayes techniques may be used to esti-

mate parameters of the latent trait distribution if it belongs to a tractable family of priors.

These methods all rely upon local independence for their validity; moreover they tend to be

expensive in terms of computation and storage.

We will examine a simpler method of estimating the ability distribution which, in addi-

tion, is robust to some violations of local independence. Consider a set of J binary items

that may be embedded in a longer sequence or pool of items (X 1, X 2, XA,.. .). Let E La the

latent trait of interest, let Pt(0), P2(0),... , Pj(O) be the item characteristic curves, ICC's,
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with respect to E), and denote averages of items as X)j = I E Xj, and similarly for averages

T(e) of ICC's. Under the usual local independence (LI) and monotonicity (M) conditions

of item response theory (e.g. Hambleton, 1989), or more generally under Stout's (1990)

formulation of essential independence (EI) and local asymptotic discrimination (LAD), we

know that j(Xj) =_ 7-j'(Xj) is a plausible point estimate of 0: Oj(Xj) is a consistent

estimator of 0 under either set of assumptions. It immediately follows that the distribution

of Oj(Xj)
Fj(t) = P[ij(Xj) < I

converges to that of e as well (e.g. Serfling, 1980, p. 19). Now consider administering the

test Xj to N examinees, obtaining N response vectors Xlj,..., Xj and corresponding 0

estimates j(jX~j,...,Oi(XNj); a natural estimator of the e distribution is the "empirical"

distribution of these j's 1 (1)

FN,J(t) - E
= {fraction of OJ(-..J)'S <_ t}

where the "indicator function" Is takes the value 1 if 5 is true and 0 if S is false.

Theorem 1 Suppose (XI, X2 ,...) is a sequence of items and E is a latent trait such that

El and LAD hold. Define Oi(Xj) as above. If the distribution function

F(t)-- P[ < t]

is continuous, the empirical distribution function t'NJ(t) defined in (1), converges in proba-

bility to F at each t as both J --+ oo and N --+ oo.

As with the work of Stout (1990) and Junker (1991), the embedding in an infinite-length

item pool is partly a conceptual tool. In practice, one might check the El condition using

Stout's (1987) test, and check the LAD condition by verifying that the average ICC for a

particular test was an invertible function.
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In fact, the full strength of the LAD condition is not needed here. A weaker condition

that also gives the theorem is that, for all t2 > ti there exists C(t1 , t2) such that

liM inf PJ4 2 ) -7 PJ(t1 ) > 4 2 (2)
J-00

Similarly, the full strength of the EI condition is not needed. It suffices to have, for all t,

lim Var (Xije = t) = 0. (3)

Under the weaker conditions (2) and (3), the consistency of Pj I (Xi) as a point estimate

for 0 may fail, but Theorem 1 still goes through. The proof of Theorem 1 is based on a

well-known exponential bound due to Dvoretsky, Kiefer and Wolfowitz (Serfling, 1980, p.

59) on the error made in approximating Fj(t) with FN,.(t). See Appendix B for some details.

2 Two practical considerations

Note that the theorem does not in any way require that the ICC's have 0 and 1 as lower and

upper asymptotes. For example, if 15 has a lower asymptote c, i.e.,

liminf j(t) > c > O,Vt E IR,
J- o

there certainly could be positive probability that some Xj's have X- < c. The only rea-

sonable thing for TP'1 to do with such an Xs is send it to -oo, which ruins the estimate of

F.

But for any fixed 0, if c < liminfj-o j(0),

lirnsupP[x, cJ = limsup] P[Xj < cO = tldF(t)
J-400 J-00 -00

< limsup] 0 P[Xj < Pj()jE = t]dF(t)
J-00o 00o

=F(O),

• • m i-c -cm m
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after observing that P[Xj _ Pj(0)Ie = t) -* 1{t<} and applying standard convergence
results (Ash, 1972). By letting 0 -+ -oo it follows that

lir P[XJ :< c] = 0.
J-.oo

The distribution of ij(Xj) does indeed place mass at -oo for some scores (e.g., for -Xj/J 0

and fails to "recover" the ( distribution for those scores. The point of the calculation

is that as J grows, the part of the 0 distribution corresponding to these "bad" scores

becomes negligible, so we don't have to worry, theoretically, about its not being recovered.

Indeed, under local independence, we can further calculate that P[j < c] falls off essentially

geometrically as J --+ oo (Hoeffding 1963, p. 15).

However in practice we still must be concerned about %j's below a lower asymptote c,

or above an upper asymptote d. In the pilot simulation described below we have made two

adjustments for this problem. Our first adjustment replaces the basic point estimate 9, with

an estimator based on a shrunken Xj:

i(P i)= F- IJ+2 "

This estimator also converges in distribution to e, and it is evidently bounded (for fixed J)

if the asymptotes of Pi are 0 and 1. Our second adjustment is in the numerical inversion

of the function Pi on the computer. We have written the inverter (a secant variation of

Newton's method) so that it finds a root of a linear extrapolation of Ti(t) = Xi when X
lies outside the asymptotes of Pi. This adjustment is innocuous asymptotically.

Finally, note that this method (like others) requires "perfect" knowledge of the ICC's.

In practice of course one never knows the ICC's perfectly, so it is important to know what

happens if the "wrong" ICC's are used in the definition of &j. For example, how sensitive

is this method to using estimates of the item parameters in a 3PL (three parameter logistic

ICC) model, instead of the true parameters; or how far off is the estimated ( distribution if

the true ICC's are 3PL's, but only Rasch ICC's are used to calculate 6j?
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Theorem 2 Suppose X 1,X 2 ,... and 0 are as in Theorem I with ICC's P1 (t), P2(t),

with average -Fj(t) as before, and suppose

R,(t), R 2(t),

are another set of ICC's, with average Wi(t). Let P-j and -' be the corresponding inverses,

and let

Oj(X) = -Rj (X).

Fix 9 such that 7P' 171R(9) has a finite limit r(O). Then

Fj(O) = P[ej(X.,) 0 9] - F(r(G))

(where F is the distribution of 0). If these hypotheses hold for every 9, and if r and F are

continuous functions, then the convergence is uniform in 0.

The existence of the limit r(O) is a technical requirement that, like LAD, is innocuous in

the context of real, finite length tests. The most useful interpretation of Theorem 2 is that

IFj(O) - F~jflj(0)II --- 0

as J -+ o, i.e., the distribution of e is estimated with a distortion -j'lW,. This follows

from the theorem if F is continuous at r(O).

The proof of Theorem 2 expands on the technique used to prove convergence of Fj(O) to

F(O); see Appendix B. Just as in Theorem I it is also possible to show that the empirical

distributions

1 =1

converge to F(r(O)).

The value of Theorem 2 is that if the function T'j- (IR j()) can be (partially) identified,

then the distribution of Oj can still tell us a lot about the underlying 0 distribution. For
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example, if the "true ICC's" are P(O) and the 0 distribution is recovered with "estimated

ICC's" R,(O), with the estimated ICC's satisfying

TPi(o) -Rj(o)I --* 0

as J --+ oo, then the estimated distributions Fj will converge to the true distribution F of

6, as long as the derivative j(0) is bounded away from zero at each 0 as J -4 oo (this is

guaranteed by LAD for example).

Some knowledge of the underlying e distribution may even be available when the "true

ICC's" Pj(O) and the "recovery ICC's" Rj(O) do not match up asymptotically. For exam-

ple, it is easy to check numerically that for "typical" parameter values, averages of logistic

ICC's are themselves approximately logistic (with parameters approximately the averages of

the discrimination and difficulty parameters of the individual ICC's). Thus for example if

the P(0) are Raach (one-parameter logistic) and the estimation method for the "difficulty

parameters" bi is known, on average, to bias the i by some fixed but unknown additive

bids para,.,ter 0 (so that logit R2(O) - logit P3(0) + 0J) then roughly Tj(-Rj(0)) t a# - fl,

with a near 1, so that the location of the E distribution will be estimated wrongly but

the (shape) family to which it belongs may still be identified. Similar considerations apply

when the P(0) are 3PL, and the R,(0) are 2PL: over the domain of Tj'(O), 7T'(Rj(0)) is

approximately linear.

3 Kernel smoothing

The basic estimator proposed in (1) is the "empirical distribution" function
1N

FNvj(t) = -= l{ ',j)<t

JZ PN[-J = jI/J] 1 {T5(j/j)<t )  (4)
j--0
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where
PN{"XJ -=/J} "- . _E l ,, j

n=1

is the natural estimator of the (discrete) distribution of Xj based on N observations YJJ,

XNj. The indicator function on the far right in (4) may be written

ly-V(l)< = k t - Tj'(J/J)]

where k(u) is constant, except for a jump from 0 to 1 at u = 0, and h is any positive

number. In cases where the 9 distribution F is continuous, we may be able to improve

the performance of FN,J by replacing the discrete function k with a continuous distribution

function K(u) increasing from 0 to 1 as u ranges from -co to oo. Denote the smoothed

estimator as

pm'jh(t) = PNXJ =hj/JK

E K h(5)

This estimator is in the same spirit as kernel density estimators for estimating the density of

a continuous random variable V based on direct, independent observations V1 , V2 , ... ,VN:

,N(t) = 1

where k(t) is a fixed density (see for example Silverman. 1986). However it differs from these

estimators in several ways.

First, our estimator FvJh is a distribution estimator, not a density estimator. Reiss

(1981) is another example in which kernel smoothing is used to estimate distributions.

Second, we are not allowed direct access to the observations il,.. ()NV. We must base

our estimation of F on the discrete, noisy transformations XiJ,. .. , NJ of O1,... ,N.

Note that the "granularity" of these observations changes with J.
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Third, the observations Xlj,.. ,XNJ must be transformed by the nonlinear transfor-

mation T'. This means that the granularity changes over the range of e and Xji; this

complicates practical calculations such as those leading to optimal rates for N, J and h.

We now show that the weighted root mean square error (RMS) between this estimator

and the true E distribution goes to zero as N, J --+ oo. The theorem below is analogous to

Theorem 1.

Theorem 3 Suppose X 1 , X 2,... and E are as in Theorem I with ICC's P1(0), P2(8),...

Define FNJh(t) as in (5), for a fixed kernel distribution function K. Then if the distribution

function F of 0 is continuous, and K has a finite first absolute moment,

RMS {E [PNjA,(t) - F(t)]2g(t)dt} -2e_ 0 (6)

as N --* oo, J --+ oo and h --.-0 , for any density g(t).

Unlike most nonparametric density estimation results, there is no restriction on the rates

at which h -- 0, N --- oo or J --+ oo. This is partly because a distribution function is

smoother than, and therefore easier to estimate than, a density. The corresponding technique

for estimation of the e density would require h3 to tend to zero more slowly than E[O((X 4 ) -

E], for example, as well as further conditions on the rates at which N and J tend to oc.

Despite the fact that there are no rates in the theorem, devising h as a function of N and J

to produce the "right" amount of smoothing is an important issue to which we shall return

below.

The proof of Theorem 3 (see Appendix B) is based on decomposing the RMS in (6) as

RMS 2 = {P[T'(Xj) + hY < t] - P[ < t} 2g(t)dt

+ LVarA K t- -- -(Xi) g(t)dt (7)+ -0 Vart
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where Y is a random variable with distribution K, independent of e and all item responses.

This technique can be modified to show that

E[FNJh(t) - F(t)]' --+ 0

for any t, and hence PNJh(t) - F(t) in probability, for each continuity point t of F. For

example, this provides another proof that our original estimator FN,J converges in probability

to F. It would also be clear from the proof that the same smoothing could be applied with

any consistent estimator Lj in place Pj1 (Yj).

From the decomposition of RMS in (7) into squared-bias and variance terms it seems

that the optimal h should be more sensitive to J than N. Indeed, when J is small and N

is relatively large, the coarse granularity inherent in 7-' (Xj) should predominate over the

finer granularity inherent in observing N examinees.

A workable approach to setting h is to make a quick, crude estimate of the variance of e

by assuming that X.j is uniformly distributed on the interval defined by the lower asymptote

c and the upper asymptote d of Tj(G) and then applying the formula

h = C. -'I. (Var 1)"' (8)

which seems appropriate when K has a variance (Silverman, 1986, pp. 45-48; Reiss, 1981).

Our crude estimate of Var e is obtained by tabulating values of () = P'((j + 1)/(J + 2))

for all j such that c < (j + l)/(J + 2) < d, and calculating

(Var 0 )'/2 (.7413)( interquartile range)

(following the relationship between interquartile range and standard deviation for the Normal

distribution). Preliminary trials with C = 1, 1/2, 1/3, 1/4 in (8) indicated that C = 1/3

produced the best RMS results.

There is reason to believe that choice of K should not be very influential on the RMS in

(6) (Silverman, 1986, pp. 42-43). The K used in our simulations was

K(t) = 3: -(1 _ u2 ) 1{l.1<i1du
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41(3t - +2) ,It 1 (9)

t >1

This choice is conservative about the tails of the E distribution.

4 Computer simulation

The estimators proposed in Theorems 1 through 3 are less complicated than distribution

estimators currently in use in IRT. To help evaluate these estimators a pilot simulation

study ? :as performed. In this simulation, item response data was generated using various

dL = 1 parametric models, and we attempted to recover the ability distribution using both

the smoothed and unsmoothed estimators.

Monte Carlo trials: M = 100
Examinee sample size: N = 5,000
Ability distribution: Normal N(0, 1)

Bimodal Mixture IN(-1.5, 1) + N(1.5, 1)
Discontinuous X1 - 1

Test length: J = 10, 30, 60, 100
ICC type: Rasch: bj's equally spaced from -2 to 2

3PL: bi's equally spaced from -2 to 2
ai's cycling through 0.5, 1.0, 1.5
ci's all set to 0.2

'Estimated': Generated with the 3PL ICC's above;
Estimated with the ICC parameters:
Pi - N(bi, 1/J)
ai -' N(ai, 0.25)

-ti - max{N(0.2,0.1),0}
(all independent).

Table 1: Monte Carlo simulation parameters.

The parameters of the pilot simulation are indicated in Table 1. All possible combinations
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of these parameters were investigated. The choice of ability distributions was intended to

examine two "typical" and one "worst case" target distribution. While the standard normal

distribution is extremely smooth and has a bounded positive density the distribution of the

shifted chi-squared random variable X -1 puts no mass below 0 - -1 and the density jumps

from 0 to +o at 0 = -1. (This choice is not intended to be terribly realistic, but allows

us to explore the performance of our distribution estimator under adverse circumstances.)

Although the means of these distributions are both 0, the chi-squared distribution has twice

the variance of the normal. The bimodal mixture was chosen to represent a situation where

two radically different types of examinee take the test. Its standard deviation is also greater

than 1 (roughly 1.8).

The ICC's used were all subfamilies of the three parameter logistic (3PL) curves:

Pj(t) = ci + (1 - ci)[1 + exp[-al[t - bi]]-.

In the case labelled "Rasch", ai =_ 1 ,ci  0 and bi are as indicated. The same ICC's

were used to recover F as to generate the data. Indeed 059 is exactly the MLE for 0

under the Rasch model with known item parameters. Similarly for the 3PL case, where all

the parameters were allowed to vary as indicated above; now 05(.) is a somewhat inefficiel t

estimator of 0. In the case labelled 'Estimated', the 3PL ICC's were used to generate the

data (P(f)'s in Theorem 2) but then their item parameters were deliberately contaminated

with noise to produce the "recovery ICC's" (Rj(O)'s in Theorem 2) used to estimate F, to

roughly approximate the practical situation in which item parameters themselves must be

estimated from data. Thus the cases Rasch, 3PL, and 'Estimated' represent increasingly

hostile situations for the distribution estimator to work in.

Finally, the choice of N = 5.000 examinees was somewhat arbitrary. In preliminary runs,

N = 1,000 and N = 10,000 yielded measures of fit of the estimated ability distribution to the

true distribution quite comparable to those reported here. The main difference was in the

variances of our estimated measures of fit. N = 5,000 was chosen because at that level the
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variance is much better than at N = 1,000 and not much worse than that at N = 10,000.

The basic estimators used to compare recovery of F from case to case were the empirical

distribution function (EDF)

NJ(t) = on=x

and the kernel distribution estimator (KDE)

where

(and K and h are as described in (8) and (9) above). Each of these distribution estimators

is consistent for the true e distribution, by application of Theorem I through Theorem 3.

For each simulated data set, sample means and standard deviations for estimates of

RMS = {E J [F..t(t) - F(t)]2g(t)dt} 1/2

are reported. In addition, mean estimates of

MAX = E[sup{f, 8t(t) - F(t)I: -oo < t < oo}]

and the average value LOG = t.. at which MAX is attained are reported. (Note: Fat

stands for either of the distribution estimators above.) In general the weighting function g

should be chosen to reflect our interests in the e distribution F: g should give more weight

to areas of F that should be well-estimated and less weight to areas of F for which we are

willing to tolerate less good estimation. In these simulations, the weighting function g was

taken to be the standard normal density: some weight is given to estimating F well at all

O's, but more weight is given to est"mating F well near 0 = 0. More details about these

distances and the methods of calculation can be found in Appendix A below.
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Test RMS Deviation
Length Estimator ave SD MAX LOC

10 EDF 0.04655 0.00002 0.11021 0.37694
KDE 0.02318 0.00003 0.03812 0.89134

30 EDF 0.01692 0.00001 0.04032 0.09754
KDE 0.00887 0.00002 0.01447 0.23184

60 EDF 0.00984 0.00002 0.02510 0.07844
KDE 0.00652 0.00002 0.01076 0.05334

100 EDF 0.00731 0.00002 0.01895 -0.02856
KDE 0.00577 0.00002 0.00965 -0.07616

Table 2: e - N(0, 1), Rasch

Test RMS Deviation
Length Estimator ave SD MAX LOC

10 EDF 0.07015 0.00002 0.15724 -1.00076
KDE 0.05158 0.00003 0.09368 -1.23646

30 EDF 0.02794 0.00002 0.06418 -0.77476
KDE 0.02176 0.00002 0.03755 -1.26626

60 EDF 0.01521 0.00002 0.03527 -0.46316
KDE 0.01251 0.00002 0.02109 -1.05756

100 EDF 0.01035 0.00002 0.02463 -0.33196
KDE 0.00907 0.00003 0.01532 -0.80926

Table 3: E ,V(0, 1), 3PL
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I Test RMS Deviation
Length Estimator ave SD MAX LOC

10 EDF 0.09665 0.00004 0.22175 -0.74996
KDE 0.08412 0.00004 0.13431 -1.21956

30 EDF 0.05695 0.00004 0.11573 -0.67436
KDE 0.05439 0.00004 0.08258 -0.89616

60 EDF 0.01835 0.00002 0.04188 -0.70396
KDE 0.01645 0.00003 0.02802 -1.10236

100 EDF 0.01823 0.00003 0.03782 -0.49826
KDE 0.01767 0.00004 0.02668 -0.79636

Table 4: 0 - N(O, 1), Estimated

From Tables 2, 3 and 4, it is clear that smoothing in the KDE is helping, especially with

short tests. In comparing Tables 2 and 3 it is clear that the presence of the nonzero lower

asymptote c is degrading the fits. This can be seen both in the reduced RMS values and in

the movement of LOC, the location of the maximum deviation between Feat and F, toward

negative values. Finally, comparison of Tables 3 and 4 indicates that using 'noisy' ICC's

somewhat degrades the recovery of F.

Figure 1 illustrates the performance of the estimators in Table 3. The first three panels

are probability-probability (p-p) plots of the estimated E distribution (vertical axis) against

the true 9 distribution (horizontal axis), for 10, 30 and 60 items. Each panel depicts one

of the 100 Monte Carlo trials for the corresponding line of Table 3. The step functions

represent the EDF estimator and the smooth curve represents the KDE estimator. The

closer each is to the solid diagonal line, the better the true probabilities of the (3 distribution

are estimated. In particular for 30 or 60 items, estimated probabilities are quite close to true

probabilities. The story is very similar for the performance of the estimators in Tables 2, 5

and 6 (see also Figure 3). The fourth panel in Figure I compares the density derived from

the KDE estimator in panel three to with the true (3 density (some excessive bumpiness in

the estimated density is attributable to the fact that the "window width" h was chosen to
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Thet - Norml, 3PL. 10 Uems Thet - Nowma. 3PL. 30 Itemso 0i

d 'A

OLO a .4 O' O. . 0.0 0, 0.4 O.s

-b - NooJ., 3PL, 60 Items Tet - Normu, 3PL, 60 Items

00

0 . 0 0.8 1.0 -2 . 0 2

Figure 1: p - p and density plots of EDF and KDE estimators. EDF is represented by step
function, KDE by curve. In the last panel, the true density is the dashed curve and the
KDF_-based density estimate is the solid curve.
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make a good distribution estimate rather than to make a good density estimate).

Theo - Normal, Estimated. 30 Itm Thea - Normi, Euilmia, 30 tems

a~m o v

I

Figue 2: p - p and density plots of EDF and KDE estimator. EDF is represented by step
function, KDE by curve. In the second panel, the true density is the dashed curve and the
KDE-based density estimate is the solid curve.

Figure 2 illustrates the performance of the estimators in Table 4. The left panel is a
p - p plot of the EDF (step function) and KDE (smooth curve) estimators for 30 items, and

the right panel compares the corresponding KDE-based density with the true E) density. In

the Monte Carlo trial illustrated, contamination in the parameters of the "recovery" ICC's

caused some bias and scale distortion in the estimated distribution, but the estimate still

correctly suggests that E) has a Normal or bell-shaped distribution.

In Tables 5, 6 and 7, in which E) is bimodal. the KDE estimator is still doing better

than the EDF. It is encouraging to see that the orders of magnitudes of the RMS and MAX

measures of fit are the same as in the N(0, 1) case above. It is a little surprising that the

fits can actually be better for the bimodal cases than the normal, but perhaps the greater

variability is working in our favor here: we are getting more extreme-ability examinees with
which to form F,,t and thus to estimate the tails of F. Finally, note that there is much less
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difference in the fits of the 3PL and 'Estimated' 3PL cases.

Test RMS Deviation
Length Estimator ave SD jMAX LOC

10 EDF 0.04769 0.00003 0.12379 -1.36996
KDE 0.03678 0.00003 0.06299 -1.25226

30 EDF 0.01820 0.00003 0.04668 -0.61856
KDE 0.01547 0.00003 0.02502 -0.42646

60 EDF 0.01107 0.00003 0.02710 -0.25206
KDE 0.00995 0.00003 0.01622 -0.17576

100 EDF 0.00870 0.00003 0.01923 -0.03886
KDE 0.00817 0.00003 0.01290 -0.13216

Table 5: E - Bimodal, Rasch

Test RMS Deviation
Length Estimator ave SD MAX LOC

10 EDF 0.05268 0.00003 0.12160 1.08084
KDE 0.03612 0.00003 0.09342 -4.44996

30 EDF 0.02268 0.00002 0.05616 -0.66696
KDE 0.01877 0.00002 0.04229 -3.68386

60 EDF 0.01353 0.00003 0.03496 -1.24996
KDE 0.01205 0.00003 0.02561 -2.75386

100 EDF 0.00998 0.00003 0.02457 -1.22086
_ KDE 0.00924 0.00003 0.01860 -2.64946

Table 6: e - Bimodal, 3PL

Figure 3 illustrates the performance of the estimators in Table 6, for 60 items. Again,

the left panel is a p - p plot of the EDF (step function) and KDE (smooth curve) estimators

and the right panel depicts the KDE-based density estimate. Once again the estimated

distribution provides good estimates of probabilities under the true distribution, and the

corresponding density estimate tracks the two modes of the true E distribution reasonably

well.
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Test RMS Deviation
Length Estimator ave SD MAX LOC

10 EDF 0.06387 0.00005 0.14624 0.78714
KDE 0.05101 0.00005 0.09497 -4.97589

30 EDF 0.03203 0.00005 0.08038 -2.37405
KDE 0.02958 0.00005 0.06457 -3.38695

60 EDF 0.01386 0.00003 0.03747 -1.11546
KDE 0.01245 0.00003 0.02796 -2.63776

100 EDF 0.01120 0.00004 0.02776 -1.42786
KDE 0.01055 0.00004 0.02134 -2.29616

Table 7: E - Bimodal, Estimated

Thi - Bbmodai. 3PL. 60 te s -Th-Brm 3PL. 60 Items

0

10:
o0

0.0 02 0.4 06 0.3 1.o , 4 . 0 2 3

The TM. Oubtme nm

Figure 3: p - p and density plots of EDF and KDE estimators. EDF is represented by step

function, KDE by curve. In the second panel, the true density is the dashed curve and the

KDE-based density estimate is the solid curve.
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In Tables 8, 9 and 10, note how gradual the decrease in MAX is; this can be attributed

partly to the fact that 91) "doesn't know" that F assigns no mass to the interval (-co, -1)

and thus freely places i's there, so that Fa is grossly overestimating F for 0 < -1. This

certainly explains why LOC is near -1 in all but one case. It seems remarkable that the

RMS should drop as much as it does, considering the fact that the Normal weighting function

g assigns significant weight to the region near or below 0 = -1. Once again there is little

difference between the 3PL and 'Estimated' 3PL cases. Finally, note that the EDF estimator

is doing better than the KDE estimator in many cases here. Our ad hoc choice of h is

probably failing us here by being too large to track the "sharp upturn" in F at -.

Test RMS Deviation
Length Estimator ave SD MAX LOC

10 EDF 0.09922 0.00004 0.23352 -0.26996
KDE 0.09241 0.00003 0.20600 -1.00996

30 EDF 0.05404 0.00003 0.14608 -0.91796
KDE 0.05508 0.00003 0.17924 -1.00996

60 EDF 0.03812 0.00003 0.15993 -1.00996
KDE 0.04010 0.00003 0.16010 -1.00316

100 EDF 0.02944 0.00003 0.15246 -0.99996
KDE 0.03215 0.00003 0.14717 -0.99996

Table 8: X2 - 1, Rasch

5 Discussion

To implement this scheme in practice, one must numerically invert the average ICC Pj for

the test in question at or near the J+l possible values of Yj. After this, a table constructed

from the inversion can be used simply and cheaply to estimate E distributions for each

of several administrations of the same test, or each of several subpopulations in a single

administration. For shorter tests lengths the basic statistic 0j may need to be rescaled,
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Test RMS Deviation

Length Estimator ave SD MAX LOC
10 EDF 0.11871 0.00004 0.30689 -1.00996

KDE 0.10699 0.00004 0.28934 -1.00996
30 EDF 0.07276 0.00004 0.22700 -1.00996

KDE 0.07188 0.00004 0.23167 -1.00996
60 EDF 0.05291 0.00003 0.20477 -1.00996

KDE 0.05408 0.00003 0.20211 -1.00996
100 EDF 0.04153 0.00003 0.19628 -0.99996

KDE 0.04365 0.00003 0.18294 -1.00976

Table 9: e _ X2 - 1, 3PL

Test RMS Deviation
Length Estimator ave SD MAX LO

10 EDF 0.11387 0.00005 0.30689 -1.00996
KDE 0.10600 0.00005 0.33073 -1.00996

30 EDF 0.08264 0.00005 0.32359 -1.00996
KDE 0.08161 0.00005 0.30244 -1.00996

60 EDF 0.05322 0.00003 0.20477 -1.00996
KDE 0.05466 0.00004 0.21590 -1 .00996

100 EDF 0.04303 0.00004 0.20150 -1.00996
KDE 0.04491 0.00004 0.20859 -1.00646

Table 10: e , X2 1 1, Estimated
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as we have done with 6(), to effectively estimate F. Kernel smoothing of the estimated

distribution (KDE) is also quite helpful. Work is currently underway (Nandakumar and

Junker, 1992) to further examine and refine these methods using essentially unidimensional

simulation data, and to apply the estimators to real tests.

Because it is fast, this scheme could be also be used for some diagnostic purposes. For

example, if ICC's were estimated under the assumption of a Normal underlying e distribution

and a 3PL model, the KDE estimate of the e distribution could be plotted on a Normal

probability plot to examine (jointly) the assumptions about distribution and ICC forms. Or

the e distribution estimates under two ICC estimation techniques could be compared to see

how well they aee: Quite different ICC forms or parameter sets could in principle lead

to very similar 0 distributions: if so then for many purposes it would then be a matter of

indifference which ICC's were used, so considerations such as cost of ICC estimation, etc.,

could come into play. Finally, it may be possible to estimate the e distribution sufficiently

accurately with, say, Rasch ICC's (for which item parameters can be estimated independently

of the e distribution), and then use that estimate as part of a marginal maximum likelihood

approach to estimating item parameters in a 3PL model which more accurately models the

item response behavior.
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Appendix A. Details of the simulation

For each simulated data set, M Monte Carlo trials were run (one trial entails sampling N examinees,

generating a 0 and J item responses for each examinee, and constructing the distribution estimates

gvj and F'NJ& from these). In our simulation, M was taken to be 100. In the discussion below,

Fe1 stands for either of the two distribution estimates tried.

For each trial, two measures of fit to the true ability distribution F were reported. First, the
value of

S o = max{IFe(tI) - F(.t)l : to,..., tj2 o)

was calculated, for ti's ranging from -6 to 6 spaced at 0.01 intervals, as an approximation to

S = sup{fFet(t) - F(t)I; t E (-oo, oo)}

as well as the value L = ti.. at which S was attained. Second, an approximation to the squared

distance
I' = j [F.t(t) - F(t)12g(t)dt

was calculated. where the weight function g was taken to be the standard normal density. The

approximation used vas the Monte Carlo approximation
_ = "[F,(Tk)- F(Tk)] 2 ,

K k=-

where T",...TK are iid with marginal density g, and K = 500 for our simulation.
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Finally, Monte Carlo sample averages

~V ndI2, and

were computed, as well as sample standard deviations. -9 estimates E], I estimates E[L], and

estimates {E[f7]}1I2 standard deviation for 7 was estimated using the delta method (Serfling,

1980, p. 118).

E131 may be regarded as a reasonable approximation to MAX = E[S]. Because of the dis-

cretization in calculating S and L, E probably is not as good an indication of the true value

LOC = t where the distributions are farthest apart, but it may still be of some descriptive value.

Finally, fE[Il}1/2 is exactly

R.MS E {EJ [Fstt) - F(t)J2g(t)dt }1/2
The pseudo-random number generators used were linear congruential generators (see Rubin-

stein, 1981)

r, = (a -r,-i + c) mod m,

using a = 75,c = O,m - 231 for generating O's and a = 27 + 1, c - 1, m = 23s for generating

item responses. Normal observations were obtained from these uniform observations by the polar

transformation
Z = V_/-2og=U9 cos2rU2

Z2 = v'-2log U1 sin2rU2

and the bimodal mixture and )(2 _ 1 observations were taken to be appropriate transformations of

these. Pseudo-random values obtained using these transformations do exhibit some lattice structure

but this was not considered a problem for our calculations, which are essentially all Monte Carlo

integrations.
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Appendix B Proofs

Proof of Theorem- 1: Observe that, for any c > 0,

P [rPi'N(e) - F(e) 1 e] _ P [IPN,J(e)- Fj(e)I + IFj(e) - F(e)j >

< P [IPN,J(o)- Fj(e)I > c/2] (for large J)

< C e - 2N(c/2) 2 _

for some universal constant C, and N large. (Serfling, 1980, p. 59). This tends to zero as N -* co.

Proof of Theorem 2: Observe that

p(I-, -Yj : 0] PI[Yj : Ti(e)]

= P[I '(X) +
= p ( )+ r(9) - P1T. (8) < r(9)J.

By Slutsky's Theorem, since r(0) = limj.., 7jT1 j(0) we know that +-. (j)+r(8) and .T;(X,)

have the same asymptotic law, i.e. for any t,

P(PJ'(j) + -(0) - P7-Rj,(9) < tl - F(t).

Then in particular for t = r(0),

P! jt(1j) + r(O) - -j(O)Rj(O) _ r(0)] --, F("(O)).

The assertion about uniform convergence follows from a theorem of Polya (Serfling, 1980, p.18). 0

Proof of Theorem 3: In the following calculation, it will be helpful to let Y be a random variable

with distribution K independent of 0 and all item responses. Squaring (6),

RMS 2  
- E JooFNJh(t) - F(t)12 g(t)dt

= LO E{ AVrXJ = IJJK -P[e < t g(t)dtj= o h-
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J {bias(t)12 + (var}ance(t)J gQ)dt

t - Fj- .I1(j /J)12
P' 1Xj = i/IK [- h ] -~ :5t gt

+ Var PN[XJ = jJ]K [ - g(t)dt

/L {P[-TP'('Yj) + hY 5 t] -P- : t] ]}2 g(t)dt

+~~~ ~ F 9Vr1 (t)dt

= (- S (4 j ) + t"tif nCt)N..

Note that (biN)AJJ does not depend on N. As long as

EIYJ = J IuIK(u)du < 00,

we will have hY -+ 0 in probability, so that by Slutsky's Theorem the distributions of P7j(Yj)+hY

and P-1 (7j) will converge to the same thing, namely F(t) = P[e <_ t], at every t (we are assuming

F is continuous) as J -- oo and h - co and h -+ 0. Hence the integrand of (bias)2jh converges to

zero at each t, and if g(t) is a density it follows that (biaa) jh - 0 as J - oo and h -+ 0 (and N

is free).

On the other hand, for each fixed J, h, t the random variable

K [t -7; ('X)"
K

is bounded between 0 and 1. hence if g(t) is a density we have for each fixed J and h

f Var K [t -l(Y)] g(t)dt <z 1.

Multiplying by I/N it is clear that (variance)Nsh -. 0 as N -- oo uniformly in J and h. This

proves Theorem 3. 0
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